
J Glob Optim (2008) 40:455–462
DOI 10.1007/s10898-007-9183-8

Approximate solutions and optimality conditions
of vector variational inequalities in Banach spaces

X. Q. Yang · X. Y. Zheng

Received: 29 May 2007 / Accepted: 29 May 2007 / Published online: 29 June 2007
© Springer Science+Business Media LLC 2007

Abstract In this paper, we introduce and discuss the notion of ε-solutions of vector
variational inequalities. Using convex analysis and nonsmooth analysis, we provide some
sufficient conditions and necessary conditions for a point to be an ε-solution of vector vari-
ational inequalities.
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1 Introduction

The vector variational inequality model has attracted extensive attention in recent years. The
edited book [3] has included survey papers and research papers on this topic. The study of
this model has been motivated by its applications in vector optimization and vector traffic
equilibrium problems, see Ref. [3].

Optimality conditions for a solution of vector variational inequalities have been obtained
in Ref. [7,8]. More precisely, a necessary and sufficient condition is obtained in Ref. [8] by
converting a vector variational inequality problem to an equivalent vector optimization prob-
lem and assuming some convexity condition and a necessary optimality condition is obtained
in Ref. [7] using a generalized directional derivative and a pseudo-convexity condition. An
approximate vector variational inequality problem, or an ε-solution of a vector variational
inequality problem, has been introduced and used to describe an approximate Pareto solution
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of vector optimization problems in Ref. [1]. In terms of an ε-subgradient, relations between
an ε-solution of a vector variational inequality problem and an approximate Pareto solution
of a vector optimization problem are discussed in Ref. [6].

In this paper, we investigate optimality conditions for the notion of ε-solutions of vector
variational inequalities. Our study is based on convex analysis and nonsmooth analysis. We
obtain sufficient conditions for ε-solutions of vector variational inequality problems in terms
of a shifted gap function in the dual form. Under a generalized convexity of the feasible
set, we show that one of these sufficient conditions is also necessary. We also obtain various
kinds of sufficient or necessary optimality conditions using the Clarke normal cone either in
the space of feasible solutions or in the space of objective values. We give a counter example
to show that the convexity of the feasible set is necessary to guarantee the validness of a
sufficient condition.

2 Preliminaries

Let X be a Banach space and A be a closed subset of X with a ∈ A. Let T (A, a) denote the
Clarke tangent cone of A at a which is defined by

T (A, a) = lim inf
x

A→a,t→0+

A − x

t
,

where x
A→ a means that x → a with x ∈ A. Thus, v ∈ T (A, a) if and only if, for each

sequence {an} in A converging to a and each sequence {tn} in (0, ∞) decreasing to 0, there
exists a sequence {vn} in X converging to v such that an + tnvn ∈ A for all n. Let N (A, a)

denote the Clarke normal cone, that is,

N (A, a) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 ∀h ∈ T (A, a)}.
It is well known that if A is convex then

N (A, a) = {x∗ ∈ X∗ : 〈x∗, x − a〉 ≤ 0 ∀x ∈ A}.
Let φ : X → R ∪ {+∞} be a proper lower semicontinuous function. For x0 ∈ dom(φ), let
∂φ(x0) denote the Clarke subdifferential of φ at x0. It is known (cf [2]) that

∂φ(x0) = {x∗ ∈ X∗ : (x∗,−1) ∈ N (epi(φ), (x0, φ(x0)))},
where epi(φ) = {(x, t) ∈ X × R : φ(x) ≤ t}. When φ is convex, one has

∂φ(x0) = {x∗ ∈ X∗ : 〈x∗, x − x0〉 ≤ φ(x) − φ(x0) ∀x ∈ X}.
We will need the following known result (see [[2], P.53, Corollary]).

Proposition 2.1 Let φ be locally Lipschitz on X and a ∈ A. Suppose that φ(a) = inf{φ(x) :
x ∈ A}. Then 0 ∈ ∂φ(a) + N (A, a).

Let Y be another Banach space and C ⊂ Y be a closed convex cone with a nonempty
interior. The cone C induces the following ordering relationships in Y :

y1 ≤C y2 ⇐⇒ y2 − y1 ∈ C,

y1 ≤intC y2 ⇐⇒ y2 − y1 ∈ int(C),

y1 ≤C\{0} y2 ⇐⇒ y2 − y1 ∈ C \ {0},
y1 ≤intC y2 ⇐⇒ y2 − y1 ∈ int(C).
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Let F : X → L(X, Y ) be a mapping, where L(X, Y ) denotes the set of all continuous linear
operators from X to Y . Consider the following vector variational inequality problems

(WVVI) find x ∈ A such that F(x)(z − x) ≤intC 0 for all z ∈ A,

and

(VVI) find x ∈ A such that F(x)(z − x) ≤C\{0} 0 for all z ∈ A

It is clear that x̄ ∈ A is a solution of (WVVI) (resp. (VVI)) if and only if

F(x̄)(A − x̄) ∈ Y \ −int(C) (resp. F(x̄)(A − x̄) ∈ Y \ −(C \ {0})).
This gives rise to the following notion of ε-solutions. For ε ≥ 0, we say that x̄ ∈ A is an
ε-solution of (WVVI) (resp. (VVI)) if

F(x̄)(A − x̄) ⊂ Y \ −int(C) + εBY (resp. F(x̄)(A − x̄) ⊂ Y \ −(C \ {0}) + εBY ),

where BY denotes the unit ball of Y .

3 Main results

Throughout this section, we assume that e0 is a fixed point in int(C) with ‖e0‖ = 1. Let C+
denote the dual cone of C , that is, C+ = {c∗ ∈ Y ∗ : 〈c∗, c〉 ≥ 0 ∀c ∈ C}, and let

C+
1 := {c∗ ∈ C+ : 〈c∗, e0〉 = 1}.

It is clear that

‖c∗‖ ≥ 1 ∀c∗ ∈ C+
1 . (1)

Moreover, C+
1 is a weak∗-comapct convex set in Y ∗. Indeed, it is clear that C+

1 is a weak∗-
closed convex subset of Y ∗. In view of the Alaoglu Theorem, to prove the weak∗-compactness
of C+

1 , we need only show that C+
1 is bounded. Take r > 0 such that e0 + r BY ⊂ C (by

e0 ∈ int(C)). It follows that, for any c∗ ∈ C+
1 ,

1 − r‖c∗‖ = inf
c∈e0+r BY

〈c∗, c〉 ≥ 0.

This shows that C+
1 is bounded.

In the remainder of this section, we always assume that the ordering cone C is nontrivial,
that is, C = X . Thus, 0 ∈ int(C). It follows that C+

1 = ∅.
We first provide a sufficient condition for a point in A to be an ε-solution of (WVVI) and

(VVI).

Proposition 3.1 Let A be a closed subset of X, a ∈ A and ε ≥ 0. We have

(i) If there exists c∗ ∈ C+ with ‖c∗‖ = 1 such that

inf{〈F(a)∗(c∗), x〉 : x ∈ A} ≥ 〈F(a)∗(c∗), a〉 − ε, (2)

where F(a)∗ denotes the conjugate operator of F(a), then, for any r > 1, a is an
rε-solution of (WVVI).

(ii) If there exists c∗ ∈ intC+ with ‖c∗‖ = 1 such that (2) holds, then, for any r > 1, a is
an rε-solution of (VVI).
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Proof

(i) First suppose that ε = 0. In this case, (2) means that 〈c∗, F(a)(x − a)〉 ≥ 0 for all
x ∈ A. It follows from c∗ ∈ C+ \ {0} that F(a)(x − a) ≤intC 0 for all x ∈ A. Hence
a is a solution of (WVVI).

Next we consider the case when ε > 0. Suppose to the contrary that there exists
r > 1 such that a is not an rε-solution of (WVVI). Then there exists ã ∈ A such that
F(a)(ã − a) ∈ Y \ −int(C) + rεBY . It follows that F(a)(ã − a) + rεBY ⊂ −int(C).
Hence,

〈c∗, F(a)(ã − a)〉 + ‖c∗‖rε = sup{〈c∗, y〉 : y ∈ F(a)(ã − a) + rεBY } ≤ 0.

This and ‖c∗‖ = 1 imply that

〈F(a)∗(c∗), ã〉 ≤ 〈F(a)∗(c∗), a〉 − rε < 〈F(a)∗(c∗), a〉 − ε,

contradicting (2).
(ii) This can be proved similarily by noting the fact that 〈c∗, b〉 ≥ 0 and c∗ ∈ intC+ imply

b ≤C\{0} 0. The proof is completed.

We make a note that in the special case when X = Y = Rn , C = Rn+, ε = 0 and A is
convex, Proposition 3.1 (i) reduces to Theorem 1 in Ref. [4].

Under some generalized convexity assumption of A, we can establish a necessity result.
To do this, we will need the following lemma.

Lemma 3.1 Let D := {y ∈ Y : (y + BY ) ⊂ −int(C)} and r0 := d(0, D). Then D is a
convex set with a nonempty interior and r0 ≥ 1.

Proof Let y1, y2 ∈ D and t ∈ [0, 1]. Then y1 + BY ⊂ −int(C) and y2 + BY ⊂ −int(C). It
follows from the convexity of C that

t y1 + (1 − t)y2 + BY = t (y1 + BY ) + (1 − t)(y2 + BY ) ⊂ −int(C).

Hence D is convex. Since e0 ∈ int(C) and ‖e0‖ = 1, there exists δ > 0 such that e0+2δBY ⊂
C , and so e0 + δBY ⊂ int(C). Hence − e0

δ
+ BY = − 1

δ
(e0 + δBY ) ⊂ −int(C). This implies

that − e0
δ

∈ D. Noting that D − int(C) ⊂ D, it follows that D has a nonempty interior. It
remains to show that r0 ≥ 1. Suppose to the contrary that r0 < 1. Then there exists y0 ∈ D
such that ‖y0‖ < 1. This and the definition of D imply that 0 ∈ −int(C). Since C is a cone,
C = X , a contradiction. The proof is completed.

Let A ⊂ X and f : X → Y. f is said to be cone convex-like on A if, for any b1, b2 ∈ A,
and any t ∈ [0, 1], there exists b ∈ A such that

f (b) ≤C f (tb1 + (1 − t)b2).

It is known that f is cone convex-like on A if and only if the set f (A) + C is convex, see
Ref. [5].

Proposition 3.2 Let ε ≥ 0 and a ∈ A. Suppose that a ∈ A is an ε-solution of (WVVI) and
that F(a) is cone convex-like on A. Then there exists c∗ ∈ C+ with ‖c∗‖ = 1 such that

inf{〈F(a)∗(c∗), x〉 : x ∈ A} ≥ 〈F(a)∗(c∗), a〉 − r0ε, (3)

where r0 is as in Lemma 3.1.
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Proof First we consider the case when ε = 0. In this case, a is a solution of (WVVI).
Hence F(a)(A − a) ⊂ Y \ −int(C), that is, F(a)(A − a) ∩ −int(C) = ∅. Noting that
int(C) + C ⊂ int(C), this implies that (F(a)(A − a) + C) ∩ −int(C) = ∅. Noting that, by
the definition of cone convex-likeness, F(a)(A − a) + C is a convex subset of Y , it follows
from the separation theorem that there exists c∗ ∈ Y ∗ with ‖c∗‖ = 1 such that

inf{〈c∗, F(a)(x − a) + c〉 : (x, c) ∈ A × C} ≥ sup{〈c∗, y〉 : y ∈ −C}.
Noting that C is a cone, it follows that c∗ ∈ C+ \ {0} and (3) holds.

Next suppose that ε > 0. Let Dε := εD, where D is as in Lemma 3.1. Then Dε is a
convex set with a nonempty interior. We claim that

F(a)(A − a) ∩ Dε = ∅. (4)

Granting this and noting that Dε −C = ε(D −C) ⊂ εD = Dε, it follows that (F(a)(A −a)

+ C) ∩ Dε = ∅. By the separation theorem, there exists c∗ ∈ Y ∗ with ‖c∗‖ = 1 such that

inf{〈c∗, y〉 : ∈ F(a)(A − a) + C} ≥ sup{〈c∗, y〉 : y ∈ Dε}.
This implies that c∗ ∈ C+ and

inf{〈c∗, y〉 : ∈ F(a)(A − a)} ≥ sup{〈c∗, y〉 : y ∈ Dε}. (5)

On the other hand, by the definition of r0, there exists a sequence {yn} in D such that
‖yn‖ → r0. Hence 〈c∗, εyn〉 ≥ −‖c∗‖ε‖yn‖ = −ε‖yn‖ → −εr0. This and (5) imply
that (3) holds. It remains to show that (4) holds. Suppose to the contrary that there exists
y ∈ Dε ∩ F(a)(A − a). Then, y

ε
∈ D, that is, y

ε
+ BY ⊂ −int(C). Since C is a cone,

y ⊂ −int(C) + εBY . Hence y ∈ Y \ −int(C) + εBY , contradicting the assumption that a is
an ε-solution of (WVVI). The proof is completed.

The following corollary is immediate from Propositions 3.1 and 3.2.

Corollary 3.1 Suppose that a ∈ A and F(a) is cone convex-like on A. Then a is a solution
of (WVVI) if and only if there exists c∗ ∈ C+

1 such that

〈F(a)∗(c∗), a〉 = inf{〈F(a)∗(c∗), x〉 : x ∈ A}. (6)

Remark Corollary 3.1 means that (WVVI) is solvable if and only if there exists c∗ ∈ C+
1

such that the following scalar variational inequality

(SVI) find x ∈ A such that 〈F(x)∗(c∗), z − x〉 ≥ 0 for all z ∈ A

is solvable.

Proposition 3.3 Let L ∈ (diam(A), +∞) and ε ≥ 0. Let A be a closed convex subset of X
and a ∈ A. Suppose that

0 ∈ F(a)∗(C+
1 ) + N (A, a) + ε

L
BX∗ . (7)

Then a is an ε-solution of (WVVI).

Proof First suppose that ε = 0. In this case, (7) means that there exists c∗ ∈ C+
1 such

that −F(a)∗(c∗) ∈ N (A, a). It follows from the convexity of A that inf{〈F∗(a)(c∗), x〉 :
x ∈ A} = 〈F(a)∗(c∗), a〉. This and Corollary 3.1 imply that a is a solution of (WVVI).
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Next we consider the case when ε > 0. Suppose to the contrary that a is not an ε-solution
of (WVVI). Then there exists ã ∈ A such that F(a)(ã − a) ∈ Y \−int(C)+ εBY . It follows
that

F(a)(ã − a) + εBY ⊂ −int(C). (8)

By (7), there exist c∗ ∈ C+
1 and u∗ ∈ BX∗ such that x∗ = −F(a)∗(c∗) + ε

L u∗ ∈ N (A, a).
Thus,

〈−F(a)∗(c∗) + ε

L
u∗, x − a〉 ≤ 0 ∀x ∈ A.

It follows that

〈c∗, F(a)(ã − a)〉 = 〈F(a)∗(c∗), ã − a〉 ≥ 〈 ε

L
u∗, ã − a〉 ≥ − ε

L
‖ã − a‖.

This and the choice of L imply that

〈c∗, F(a)(ã − a)〉 > −ε. (9)

On the other hand, by (8) one has

〈c∗, F(a)(ã − a)〉 + ε‖c∗‖ = sup{〈c∗, y〉 : y ∈ F(a)(ã − a) + εBY } ≤ 0.

This and (1) imply that

〈c∗, F(a)(ã − a)〉 ≤ −ε‖c∗‖ ≤ −ε,

contradicting (9). The proof is completed.

The following example shows that even in the special case when ε = 0, Proposition 3.3
does not hold if the convexity assumption of A is dropped.

Example 3.1 Let X = Y = R2 and C = {(s, t) ∈ R2 : t ≥ 0}. Let F(x) be the identical
mapping on R2 for all x ∈ X and A = {(s, t) ∈ R2 : s2 + t2 ≤ 2 and s3 ≤ t}. Take
e0 = (0, 1) and a = (0, 0). Then C+

1 = {(0, 1)}. We claim that

N (A, (0, 0)) = {(0, t) : t ≤ 0}. (10)

Granting this and noting that N (F(a)(A), F(a)) = N (A, (0, 0)), we have that (7) holds with
ε = 0. But, it is clear that

F(a)(A − a) ∩ −int(C) = A ∩ −int(C) � (−1,−1).

This implies that F(a)(A − a) is not a subset Y \ −int(C). Thus, a is not a solution of
(WVVI). Next, we show that (10) holds. To do this, it suffices to show that

T (A, (0, 0)) = {(s, t) ∈ R2 : t ≥ 0}. (11)

Let (u, v) ∈ T (A, (0, 0)) and take sequences xn → 0 and tn ↘ 0+. Then there exists
(un, vn) → (u, v) such that (xn, x3

n ) + tn(un, vn) ∈ A for any n. Hence,

(xn + tnun)3 ≤ x3
n + tnvn ∀n.

This means that 3x2
n un + 3xntnu2

n + t2
n u3

n ≤ vn for any n. Letting n → ∞, one has 0 ≤ v.
Hence T (A, (0, 0)) ⊂ {(s, t) ∈ R2 : t ≥ 0}. To prove the converse inclusion, let (u, v) ∈ R2

with v ≥ 0. Take any sequence {(xn, yn)} in A with (xn, yn) → (0, 0) and any sequence

123



J Glob Optim (2008) 40:455–462 461

{tn} with tn ↘ 0. For every natural number n, let vn := 3x2
n u + 3xntnu2 + t2

n u3 + v. Then
(u, vn) → (u, v) and for all n

(xn + tnu)3 = x3
n + 3x2

n tnu + 3xnt2
n u2 + t3

n u3

≤ yn + tn(3x2
n u + 3xntnu2 + t2

n u3) ≤ yn + tnvn .

On the other hand, (xn, yn) → (0, 0) and tn ↘ 0 imply that there exists a natural number n0

such that (xn+tnu)2+(yn+tnvn)2 ≤ 2 for all n > n0. Let (ũn, ṽn) = (0, 0) for all n ≤ n0 and
(ũn, ṽn) = (u, vn) for all n > n0. Then (ũn, ṽn) → (u, v) and (xn, yn) + tn(u, vn) ∈ A for
all n. This implies that (u, v) ∈ T (A, (0, 0)). Hence T (A, (0, 0)) ⊃ {(s, t) ∈ R2 : t ≥ 0}.
This shows that (11) holds.

Dropping the convexity of A, we have the following necessity result.

Proposition 3.4 Let A be a closed subset of X and suppose that a ∈ A is a solution of
(WVVI). Then

0 ∈ F(a)∗(C+
1 ) + N (A, a). (12)

Proof Since e0 ∈ int(C), it is easy to verify that e0 − int(C) is an open convex neighborhood
of 0 and e0 is on its boundary. Let P denote the Minkowski function of e0 − int(C), that is,

P(y) = inf{t > 0 : y ∈ t (e0 − int(C))} ∀y ∈ Y.

Then

P(e0) = 1 and e0 − int(C) = {y ∈ Y : P(y) < 1}. (13)

We claim that

∂ P(e0) ⊂ C+
1 . (14)

Let y∗ ∈ ∂ P(e0). Then, 〈y∗, y − e0〉 ≤ P(y) − P(e0) for any y ∈ Y . This and (13) imply
that 〈y∗,−e0〉 ≤ P(0) − P(e0) = −1 and

〈y∗,−c〉 ≤ P(e0 − c) − P(e0) ≤ 0 ∀c ∈ int(C).

It follows that y∗ ∈ C+. On the other hand, 〈y∗, e0〉 ≤ P(2e0) − P(e0) = P(e0) = 1.
Therefore, y∗ ∈ C+

1 . This shows that (14) holds. Since a is a solution of (WVVI). Then
F(a)(A − a) ∩ −int(C) = ∅. Hence,

(e0 + F(a)(A − a)) ∩ (e0 − int(C)) = ∅.

This and (13) imply that

P(e0) = inf{P(y) : y ∈ e0 + F(a)(A − a)}. (15)

Let f (x) := P(e0 + F(a)(x − a)) for all x ∈ X . Then f is a continuous convex function
on X and f (a) = inf{ f (x) : x ∈ A}. It follows from Proposition 2.1 that

0 ∈ ∂ f (a) + N (A, a). (16)

Since the bounded linear operator F(a) : X → Y is strictly differentiable, [[2], Theorem
2.3.10] implies that ∂ f (a) ⊂ F(a)∗(∂ P(e0)). It follows from (14) that (12) holds. The proof
is completed.
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Proposition 3.5 Let A be a closed subset of X and suppose that a ∈ A is a solution of
(WVVI). Then

0 ∈ C+
1 + N (F(a)(A), F(a)(a)). (17)

Proof As in the proof of Proposition 3.4, (15) holds. It follows from Proposition 2.1 that
0 ∈ ∂ P(e0) + N (e0 + F(a)(A − a), e0). Noting that

N (e0 + F(a)(A − a), e0) = N (F(a)(A), F(a)(a)),

this and (14) imply that (17) holds.
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